SWCHS SIXTH FORM SUMMER WORK

A Level Biology

TASK
If you have any queries regarding this work please email sogilvy@swchs.net
$\frac{\text { Task }}{\text { Please work though the information provided below. }}$

Getting Ready for A-Level Biology

We cover AQA AOLevel Biology. The specification is here https://filestore.aqa.org.uk/resources/biology/specifications/AQA-7401-7402-SP-2015.PDF

Head-Start Book - OPTIONAL

This book is really useful. It revises key concepts that were covered at GCSE and are important to fully understand before proceeding to more advanced study.

Pearson Scientist of the Month:

https://www.amazon.co.uk/Head-Start-level-Biology-
Level/dp/1782942793/ref=sr 1 1?crid=2T08BC5D29BM8\&keywords=cgp
+head+start+to+a+level+biology\&qid=1655734230\&sprefix=CGP+head+st
art\%2Caps\%2C70\&sr=8-1

Look at this website on which Pearson are unveiling their Scientist of the Month - other interesting scientists are also featured.
https://www.pearson.com/uk/educators/schools/subject-area/science/why-science-matters/scientist-of-themonth.html

Careers using biology

Explore a huge variety of careers that are open to people with a biologists background https://www.rsb.org.uk/careers-and-cpd/careers

Note taking

Note making is a good skill to learn. We will cover a lot of material each lesson and you may not be able to write everything down. An important activity will be to go back and expand and supplement what you have written and review the work. This reviewing will make it easier to learn for tests and exams. The Cornell method of note making is one example of effective mote making.
Divide your page into 3 areas:

More information here:
http://en.wikibooks.org/wiki/Note Taking/Specific Formatting and here https://www.youtube.com/watch?v=WtW9lyE04OQ

Look at the video linked to below - just under 6 mins long on evolution. Try and make notes using the technique already explained. Bring these to class to compare with other students. This will allow you to get an idea of note making styles. https://www.youtube.com/watch?v=XyTcINLKq4c

Where do we start?

The first term will be covering cell structure and biological molecules before moving onto DNA, gas exchange and digestion.
It would be a good idea to focus any refresher work during this interval period on those topics to give yourself the best head start into the course. GCSE bitesize and Seneca learning are good places to review your GCSE understanding in these topics. In addition, a large portion of this course uses skills from maths, so additional revision, particularly in rearranging equations, ratios, standard form, straight line graphs and calculating rates would be very useful.

Please bring to your first lesson:

Your Cornell notes on the video
Any content notes that you have made from actively reviewing your GCSE knowledge
Any notes you have made on the maths skills below

Transition from GCSE to A Level

Moving from GCSE Science to A Level can be a daunting leap. You'll be expected to remember a lot more facts, equations, and definitions, and you will need to learn new maths skills and develop confidence in applying what you already know to unfamiliar situations.

This worksheet aims to give you a head start by helping you understand and practice of some of the maths skills you'll need.

Learning objectives

After completing the worksheet you should be able to:

- define practical science key terms
- recall the answers to the retrieval questions
- reminder of maths skills including:
- converting between units, standard form, and prefixes
- using significant figures
- rearranging formulae
- magnification calculations
- calculating percentages, errors, and uncertainties
- drawing and interpreting line graphs.

Retrieval questions

You need to be confident about the definitions of terms that describe measurements and results in Biology.

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many answers as you can. Check and repeat.

Practical science key terms

When is a measurement valid?	when it measures what it is supposed to be measuring
When is a result accurate?	when it is close to the true value
What are precise results?	when repeat measurements are consistent/agree closely with each other
What is repeatability?	how precise repeated measurements are when they are taken by the same person, using the same equipment, under the same conditions
What is reproducibility?	how precise repeated measurements are when they are taken by different people, using different equipment
What is the uncertainty of a measurement?	the interval within which the true value is expected to lie
Define measurement error	the difference between a measured value and the true value
What type of error is caused by results varying around the true value in an unpredictable way?	random error
What is a systematic error?	a consistent difference between the measured values and true values
What does zero error mean?	a measuring instrument gives a false reading when the true value should be zero
Which variable is changed or selected by the investigator?	independent variable
What is a dependent variable?	a variable that is measured every time the independent variable is changed
Define a fair test	a test in which only the independent variable is allowed to affect the dependent variable
What are control variables?	variables that should be kept constant to avoid them affecting the dependent variable

Biological molecules

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many answers as you can. Check and repeat.

What are monomers?	smaller units from which larger molecules are made
What are polymers?	molecules made from a large number of monomers joined together
What is a condensation reaction?	a reaction that joins two molecules together to form a chemical bond whilst eliminating of a molecule of water
What is a hydrolysis reaction?	a reaction that breaks a chemical bond between two molecules and involves the use of a water molecule
What is a monosaccharide?	monomers from which larger carbohydrates are made
How is a glycosidic bond formed?	a condensation reaction between two monosaccharides
Name the three main examples of polysaccharides.	glycogen, starch, cellulose
Describe Benedict's test for reducing sugars	gently heat a solution of a food sample with an equal volume of Benedict's solution for five minutes, the solution turns orange/brown if reducing sugar is present
Name the two main groups of lipids	phospholipids, triglycerides (fats and oils)
Give four roles of lipids	source of energy, waterproofing, insulation, protection
What is an ester bond?	a bond formed by a condensation reaction between glycerol and a fatty acid
Describe the emulsion test for lipids	mix the sample with ethanol in a clean test tube, shake the sample, add water, shake the sample again, a cloudy white colour indicates that lipid is present
What are the monomers that make up proteins?	amino acids
Draw the structure of an amino acid	
How is a peptide bond formed?	a condensation reaction between two amino acids
What is a polypeptide?	many amino acids joined together
Describe the biuret test for proteins	mix the sample with sodium hydroxide solution at room temperature, add very dilute copper(II) sulfate solution, mix gently, a purple colour indicates that peptide bonds are present
How does an enzyme affect a reaction?	it lowers the activation energy
Give five factors which can affect enzyme action.	temperature, pH , enzyme concentration, substrate concentration, inhibitor concentration
What is a competitive inhibitor?	a molecule with a similar shape to the substrate, allowing it to occupy the active site of the enzyme
What is a non-competitive inhibitor?	a molecule that changes the shape of the enzyme by binding somewhere other than the active site.

Maths skills

1 Numbers and units

1.1 Units and prefixes

A key criterion for success in biological maths lies in the use of correct units and the management of numbers. The units scientists use are from the Système Internationale - the SI units. In biology, the most commonly used SI base units are metre (m), kilogram (kg), second (s), and mole (mol). Biologists also use SI derived units, such as square metre $\left(\mathrm{m}^{2}\right)$, cubic metre $\left(\mathrm{m}^{3}\right)$, degree Celsius (${ }^{\circ} \mathrm{C}$), and litre (I).

To accommodate the huge range of dimensions in our measurements they may be further modified using appropriate prefixes. For example, one thousandth of a second is a millisecond (ms). Some of these prefixes are illustrated in the table below.

Multiplication factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n

1.2 Powers and indices

Ten squared $=10 \times 10=100$ and can be written as 10^{2}. This is also called 'ten to the power of 2 '.
Ten cubed is 'ten to the power of three' and can be written as $10^{3}=1000$.
The power is also called the index.
Fractions have negative indices:
one tenth $=10^{-1}=1 / 10=0.1$
one hundredth $=10^{-2}=1 / 100=0.01$
Any number to the power of 0 is equal to 1 , for example, $29^{\circ}=1$.
If the index is 1 , the value is unchanged, for example, $17^{1}=17$.
When multiplying powers of ten, you must add the indices.
So $100 \times 1000=100000$ is the same as $10^{2} \times 10^{3}=10^{2+3}=10^{5}$
When dividing powers of ten, you must subtract the indices.
So $100 / 1000=1 / 10=10^{-1}$ is the same as $10^{2} / 10^{3}=10^{2-3}=10^{-1}$
But you can only do this when the numbers with the indices are the same.
So $10^{2} \times 2^{3}=100 \times 8=800$
And you can't do this when adding or subtracting.
$10^{2}+10^{3}=100+1000=1100$
$10^{2}-10^{3}=100-1000=-900$
Remember: You can only add and subtract the indices when you are multiplying or dividing the numbers, not adding or subtracting them.

1.3 Converting units

When doing calculations, it is important to express your answer using sensible numbers. For example, an answer of $6230 \mu \mathrm{~m}$ would have been more meaningful expressed as 6.2 mm .

If you convert between units and round numbers properly, it allows quoted measurements to be understood within the scale of the observations.

To convert 488889 m into km :
A kilo is 10^{3} so you need to divide by this number, or move the decimal point three places to the left.
$488889 \div 10^{3}=488.889 \mathrm{~km}$
However, suppose you are converting from mm to km : you need to go from 10^{3} to 10^{-3}, or move the decimal point six places to the left.

333 mm is 0.000333 km
Alternatively, if you want to convert from 333 mm to nm , you would have to go from 10^{-9} to 10^{-3}, or move the decimal point six places to the right.

333 mm is 333000000 nm

2 Decimals, standard form, and significant figures

2.1 Decimal numbers

A decimal number has a decimal point. Each figure before the point is a whole number, and the figures after the point represent fractions.

The number of decimal places is the number of figures after the decimal point. For example, the number 47.38 has 2 decimal places, and 47.380 is the same number to 3 decimal places.

In science, you must write your answer to a sensible number of decimal places.

2.2 Standard form

Sometimes biologists need to work with numbers that are very small, such as dimensions of organelles, or very large, such as populations of bacteria. In such cases, the use of scientific notation or standard form is very useful, because it allows the numbers to be written easily.

Standard form is expressing numbers in powers of ten, for example, 1.5×10^{7} microorganisms.
Look at this worked example. The number of cells in the human body is approximately
37200000000000 . To write this in standard form, follow these steps:
Step 1: Write down the smallest number between 1 and 10 that can be derived from the number to be converted. In this case it would be 3.72

Step 2: Write the number of times the decimal place will have to shift to expand this to the original number as powers of ten. On paper this can be done by hopping the decimal over each number like this:

6.390000000

until the end of the number is reached.
In this example that requires 13 shifts, so the standard form should be written as 3.72×10^{13}.
For very small numbers the same rules apply, except that the decimal point has to hop backwards. For example, 0.00000045 would be written as 4.5×10^{-7}.

2.3 Significant figures

When you use a calculator to work out a numerical answer, you know that this often results in a large number of decimal places and, in most cases, the final few digits are 'not significant'. It is important to record your data and your answers to calculations to a reasonable number of significant figures. Too many and your answer is claiming an accuracy that it does not have, too few and you are not showing the precision and care required in scientific analysis.

Numbers to 3 significant figures (3 s.f.):
$\underline{7.88} \quad \underline{25.4} \quad \underline{741}$
Bigger and smaller numbers with 3 significant figures:
$0.000 \underline{147} \quad 0.0 \underline{147} \quad 0 . \underline{245} \quad \underline{39400 \quad 96200000 \text { (notice that the zeros before the figures and after the }}$ figures are not significant - they just show you how large the number is by the position of the decimal point).

Numbers to 3 significant figures where the zeros are significant:
$\underline{207} \quad \underline{4050} \quad \underline{1.01}$ (any zeros between the other significant figures are significant).
Standard form numbers with 3 significant figures:
$9.42 \times 10^{-5} \quad 1.56 \times 10^{8}$
If the value you wanted to write to 3.s.f. was 590, then to show the zero was significant you would have to write:

590 (to 3.s.f.) or 5.90×10^{2}
Remember: For calculations, use the same number of figures as the data in the question with the lowest number of significant figures. It is not possible for the answer to be more accurate than the data in the question.

3 Working with formulae

It is often necessary to use a mathematical formula to calculate quantities. You may be tested on your ability to substitute numbers into formulae or to rearrange formulae to find specific values.

3.1 Substituting into formulae

Think about the data you are given in the question. Write down the equation and then think about how to get the data to substitute into the equation. Look at this worked example.

A cheek cell has a 0.06 mm diameter. Under a microscope it has a diameter 12 mm . What is the magnification?

$$
\text { magnification }=\text { image size }(\mathrm{mm}) \div \text { object size }(\mathrm{mm}) \text { or } M=\frac{I}{O}
$$

Substitute the values and calculate the answer:

$$
M=12 \mathrm{~mm} / 0.06 \mathrm{~mm}=12 / 0.06=200
$$

Answer: magnification $=\times 200$ (magnification has no units)
Sometimes an equation is more complicated and the steps need to be carried out in a certain order to succeed. A general principle applies here, usually known by the mnemonic BIDMAS. This stands for Brackets, Indices (functions such as squaring or powers), Division, Multiplication, Addition, Subtraction.

3.2 Rearranging formulae

Sometimes you will need to rearrange an equation to calculate the answer to a question. For example, the relationship between magnification, image size, and actual size of specimens in micrographs usually uses the equation $M=\frac{l}{O}$, where M is magnification, l is size of the image, and $O=$ actual size of the object.

You can use the algebra you have learnt in Maths to rearrange equations, or you can use a triangle like the one shown.

Cover the quantity you want to find. This leaves you with either a fraction or a multiplication:

$M=I \div O \quad O=I \div M \quad I=M \times O$

4 Magnification

To look at small biological specimens you use a microscope to magnify the image that is observed. The microscope was developed in the 17th century. Anton van Leeuwenhoek used a single lens and Robert Hooke used two lenses. The lenses focus light from the specimen onto your retina to produce a magnified virtual image. The magnification at which observations are made depends on the lenses used.

4.1 Calculating the magnifying power of lenses

Lenses each have a magnifying power, defined as the number of times the image is larger than the real object. The magnifying power is written on the lens.

To find the magnification of the virtual image that you are observing, multiply the magnification powers of each lens used. For example, if the eyepiece lens is $\times 10$ and the objective lens is $\times 40$ the total magnification of the virtual image is $10 \times 40=400$.

4.2 Calculating the magnification of images

Drawings and photographs of biological specimens should always have a magnification factor stated. This indicates how much larger or smaller the image is compared with the real specimen.

The magnification is calculated by comparing the sizes of the image and the real specimen. Look at this worked example.

The image shows a flea which is 1.3 mm long. To calculate the magnification of the image, measure the image (or the scale bar if given) on the paper (in this example, the body length as indicated by the line AB).

For this image, the length of the image is 42 mm and the length of the real specimen is 1.3 mm .
magnification $=\frac{\text { length of image }}{\text { length of real specimen }}=42 / 1.3=32.31$

Remember: Use the same units. A common error is to mix units when performing these calculations. Begin each time by converting measurements to the same units for both the real specimen and the image.

4.3 Calculating real dimensions

Magnification factors on images can be used to calculate the actual size of features shown on drawings and photographs of biological specimens. For example, in a photomicrograph of a cell, individual features can be measured if the magnification is stated. Look at this worked example.

The magnification factor for the image of the open stoma is $\times 5000$.
This can be used to find out the actual size of any part of the cell, for example, the length of one guard cell, measured from A to B.

Step 1: Measure the length of the guard cell as precisely as possible. In this example the image of the guard cell is 52 mm long.

Step 2: Convert this measurement to units appropriate to the image. In this case you should use $\mu \mathrm{m}$ because it is a cell.

So the magnified image is $52 \times 1000=52000 \mu \mathrm{~m}$
Step 3: Rearrange the magnification equation (see Topic 3.2) to get:
real size $=$ size of image $/$ magnification $=52000 / 5000=10.4$
So the real length of the guard cell is $10.4 \mu \mathrm{~m}$.

5 Percentages and uncertainty

A percentage is simply a fraction expressed as a decimal. It is important to be able to calculate routinely, but is often incorrectly calculated in exams. These pages should allow you to practise this skill.

5.1 Calculating percentages as proportions

To work out a percentage, you must identify or calculate the total number using the equation:

> percentage $=\frac{\text { number you want as a percentage of total number }}{\text { total number }} \times$ 100%

For example, in a population, the number of people who have brown hair was counted.

The results showed that in the total population of 4600 people, 1800 people had brown hair.

The percentage of people with brown hair is found by calculating:

$$
\begin{aligned}
& \frac{\text { number of people with brown hair }}{\text { total number of people }} \times 100 \\
& =\frac{1800}{4600} \times 100=39.1 \%
\end{aligned}
$$

5.2 Calculating the percentage change

When you work out an increase or a decrease as a percentage change, you must identify, or calculate, the total original amount:

$$
\begin{aligned}
& \% \text { increase }=\frac{\text { increase }}{\text { original amount }} \times 100 \\
& \% \text { decrease }=\frac{\text { decrease }}{\text { original amount }} \times 100
\end{aligned}
$$

Remember: When you calculate a percentage change, use the total before the increase or decrease, not the final total.

5.3 Measurement uncertainties

When you measure something, there will always be a small difference between the measured value and the true value. This may be because of the size of the scale divisions on your measuring equipment, or the difficulty of taking the measurement. This is called an uncertainty.

To estimate the uncertainty of a measurement with an instrument with a marked scale such as a ruler, a good rule of thumb is to let the uncertainty be equal to half the smallest division on the scale being used.

Using a ruler with a mm scale, the length of the leaf seems to be 74 mm . The smallest division is 1 mm , so the uncertainty is 0.5 mm .

The true length is therefore $74 \mathrm{~mm}+/-0.5 \mathrm{~mm}$.

5.4 Calculating percentage uncertainties

The uncertainty is the range of possible error either side of the true value due to the scale being used, so the value recorded for the measurement = closest estimate +/- uncertainty.

The difference between the true value and the maximum or minimum value is called the absolute error.
Once the absolute error has been established for a particular measurement, it is possible to express this as a percentage uncertainty or relative error. The calculation to use is:

$$
\text { relative error }=\frac{\text { absolute error }}{\text { measured value }} \times 100 \%
$$

In the leaf example above, the absolute error is $+/-0.5 \mathrm{~mm}$.
The relative error is therefore:

$$
0.5 / 74 \times 100 \%=0.7 \%
$$

6 Scatter graphs and lines of best fit

The purpose of a scatter graph with a line of best fit is to allow visualisation of a trend in a set of data. The graph can be used to make calculations, such as rates, and also to judge the correlation between variables. It is easy to draw such a graph but also quite easy to make simple mistakes.

6.1 Plotting scatter graphs

The rules when plotting graphs are:

- Ensure that the graph occupies the majority of the space available:
- In exams, this means more than half the space
- Look for the largest number to help you decide the best scale
- The scale should be based on 1,2 , or 5 , or multiples of those numbers
- Ensure that the dependent variable that you measured is on the y-axis and the independent variable that you varied is on the x-axis
- Mark axes using a ruler and divide them clearly and equidistantly (i.e. 10, 20, 30, 40 not 10,15 , 20, 30, 45)
- Ensure that both axes have full titles and units are clearly labelled
- Plot the points accurately using sharp pencil ' x ' marks so the exact position of the point is obvious
- Draw a neat best fit line, either a smooth curve or a ruled line. It does not have to pass through all the points. Move the ruler around aiming for:
- as many points as possible on the line
- the same number of points above and below the line
- If the line starts linear and then curves, be careful not to have a sharp corner where the two lines join. Your curve should be smooth
- Confine your line to the range of the points. Never extrapolate the line beyond the range within which you measured
- Add a clear, concise title.

Remember: Take care, use only pencil and check the positions of your points.

